
Voxel-based Fast Surface Propagation Method of Non-isolated 

and Sharp Featured Surface Outlier Removal 

 

                           Student: Yu Chen 

                                         Advisor: Prof. Jie Shen 

 

Abstract 

In this paper, we propose a new algorithm of removing outlier clusters. It is a voxel-based surface 

propagation method and can handle non-isolated and sharp featured surface outlier clusters in a fast way. 

Numerical experiments indicate the effectiveness of the algorithm in terms of accuracy and time 

efficiency. 

Key word: outlier removal, surface propagation 

 

1. Introduction 

Outlier removal is an intrinsic problem in modern society. Related techniques have been widely used 

in a variety of fields: reverse engineering, rapid prototyping, biomedicine, architecture, 

entertainment industry and etc. 

 

Many studies have been conducted to remove outliers effectively and efficiently. However, most of 

these methods perform well only in specific situations. Some methods [1, 2] are more suited to 

handling isolated outliers and some [3] are more suited to handling surface without sharp features. 

Shen, et al. [4] proposed a surface propagation method combined with minimal variance and 

normalized histogram which performs well in both non-isolated outlier cluster and sharp edges. But 

Shen’s method encounters an efficiency issue when dealing with large-scale data models. 

 

According to our analysis, non-isolated outlier clusters and sharp featured outlier clusters are two 

types of the most difficult outlier clusters. As for non-isolated outlier clusters, outlier clusters are so 

close to main surface that distance-based criteria are not effective to remove outliers. As for sharp 

featured outlier clusters, it is difficult to preserve these sharp features in a data model since geometric 

non-smoothness at these features invalidates many analysis arsenals in calculus and differential 

geometry. In some cases, e.g., in laser scan data models, we might have to handle non-isolated 

surface with sharp features which becomes the most difficult type of models. 

 

The main objective of this paper is to propose a fast algorithm to remove different especially the 

most difficult types of outlier cluster in an accurate and efficient way. The rest of the paper is 

arranged in this manner. We will first discuss some related work in section 2. Then we plan to focus 

on our new proposed method in section 3. In section 4, numerical experiment will be designed. In 

section 5, we will discuss the results of the numerical experiment. And in section 6, we will give our 



conclusions and future work. 

 

2. Related Works 

2.1  Eigen Value Method 

Eigen value method is a numerical method based on statistical analysis. We partition data points 

into voxels in 3-D space. Then we calculate eigen values for each voxel and use the smallest 

eigen value as the indicator of outliers, as shown in Fig. 1 (a). The larger the indicator is, the 

more likely the data points in the voxel are outliers. According to [5], we calculate eigen values 

for each voxel in this way. For each voxel, we first calculate a covariance matrix and then 

calculate eigen values of this matrix. After getting the indicators, we bin these indicators from 

the smallest one to the largest one. Data points in voxels whose bin number are smaller than the 

threshold are treated as true data and the rest of data points are treated as outliers. 

 

The idea of using eigen values to indicate outliers is widely used. We incorporate this idea into 

our algorithm and treat this method as a baseline in numerical experiments discussed in section 

4. 

 

2.2  Connectivity Method 

The connectivity approach observes both the density of voxels and the connection relation 

between voxels. Data points in voxels which are marked as true data are treated as true data and 

the rest of data points are treated as outliers. The voxels which are marked as true data should 

satisfy at least one of the following rules (as shown in Fig. 1 (b) and (c)): 

(a) The number of data points in the voxel is larger than the specific threshold. 

(b) The voxel has at least one neighboring voxel who satisfies rule (a). 

 

We incorporate this idea into our algorithm and treat this method as a baseline in numerical 

experiments discussed in section 4. 

 

                 

?

?

?

Count > 
Threshold

    

(a) Eigen value method                         (b) Connectivity method rule 1 

 



Count > 
Threshold

                    

(c) Connectivity method rule 2           (d) Surface propagation method (copy from [4]) 

 

Fig. 1. Sketch maps of eigen value method, connectivity method and surface propagation method. 

 

2.3  Surface Propagation 

Jie Shen, et al. proposed a unique automatic surface propagation method [4] which performs 

well even in sharp edges and non-isolated surface clusters. Fig. 1 (d) shows the basic concept 

of surface propagation. However, it uses kd-tree to support the surface propagation, which 

affects the efficiency of the method and becomes a noticeable issue for large-scale data models. 

 

To overcome this issue, we propose a voxel-based fast surface propagation method. The details 

of our method and main differences between Shen’s surface propagation and our method will 

be discussed in section 3. And comparative tests will be conducted in section 4. 

 

3. Technical Approach 

In this section, we will talk about the Voxel-Based Fast Surface Propagation (VBFSP) Method in 

detail. The One unique feature of our propagation is that it is based on voxel, which will be discussed 

in detail in section 3.1. The whole propagation starts from a selective initial voxel which we will 

discuss in detail in section 3.3. The driving forces for propagation will be discussed in detail in 

section 3.2. Finally, we will discuss how to build the whole model in section 3.4. 

 

3.1  Voxel-Based Surface Propagation 

We use a voxel as the minimal unit of analysis and display. Specifically, all the numerical 

analyses are aimed at each single voxel, and each single data point in a voxel is treated as outlier 

or not by our algorithm at the same time. We adopt this approach for three reasons: 

(a) Principle of locality: as for surface outlier removal tasks, data points in a small voxel are 

highly likely to have similar properties.  

(b) A reasonable partition of voxels provide us an effective way to analysis data clusters 

statistically and locally. 

(c) It is cheap to partition data clusters into voxels and work on them. 

 



The propagation is based on voxel and starts from a selective initial voxel. Then we look around 

the neighboring ring of the current voxel, select the voxels we think are inside the main surface 

and mark them as true data according to driving force for propagation. Other voxels in the ring 

are marked as outliers temporary. For each voxel we think are inside the main surface, we look 

around and do the same thing. The propagation terminates until we have no new voxel to see. 

After propagation, we treat each data point in the voxels which are marked as outliers or 

untouched (initial status) as outlier and each data point in the voxels which are marked as true 

data as true. 

 

Notice that because some voxels will be looked around several times, there are different tricks 

to take in the propagation. Here, we finally mark the voxel as true data as long as it has been 

treated as true data for at least one time. But as for these voxels which are treated as true data 

after being treated as outliers, they are not included into next round of propagation. Tricks may 

vary depending on specific cases. 

 

3.2  Driving Forces for Surface Propagation 

The driving force is crucial for surface propagation. We use it to determine whether a voxel 

should be included into the main surface. The key principles to select driving force for surface 

propagation include: 

(a) The driving force should be direct or indirect measurements or statistics. 

(b) The driving force should imply the levels of intimacy between voxels. 

(c) The driving force should imply the difference between true data and outliers. 

 

We define two kinds of driving forces in our method: distance and angle. As for distance, as we 

can see in Fig. 2 (a), it indicates the Euclidean distance between the centroid of data points in 

the neighboring voxel and the plain determined by the two larger eigen vectors in the current 

voxel. It is apriori assumed that the smaller the distance is, the larger the probability that the 

neighboring voxel is actually inside the main surface is. In other words, in most cases, outliers 

have larger distances than true data do. 

 

As for angle, as we can see in Fig. 2 (b), it indicates the included angle between the two plains 

each determined by the two larger eigen vectors in the current and neighboring voxel, 

respectively. It is apriori assumed that the smaller the angle is, the larger the probability that the 

neighboring voxel is actually inside the main surface is. In other words, in most cases, outliers 

have larger angles than true data do. 

 

Notice that each single driving force mentioned above is not effective enough to handle all cases. 

For example, in non-isolated surface outliers removal scenario which is regarded as the most 

difficult case, outliers are often quite close to the main surface, so the distance approach is likely 

to fail. Similarly, in some scenarios, the angle approach is not effective enough to tell true data 

and outliers. The most straightforward way is to combine these two criterions so that we can 

handle most different cases. 

 



Distance

         

Angle

 

(a) Distance for VBFSP method              (b) Angle for VBFSP method 

 

Fig 2. Sketch maps of VBFSP method 

 

3.3  Initial Voxel of Surface Propagation 

The initial voxel is another crucial factor for surface propagation. If we select an incorrect initial 

voxel, the propagation cannot help us to remove outliers. The key principle to select initial voxel 

of surface propagation is to find the voxel which is most likely to be inside the main surface. 

Here, we adapt connectivity flags and histogram bins of eigen values to determine the hlevel 

variable for each voxel which indicates the probability that a voxel is inside the main surface. 

Then we select the voxel with the highest probability as an initial voxel. 

  

We have tried to select initial voxel manually, and found that a good initial voxel means a lot 

for the final result. It indicates that how to select a good initial voxel for surface propagation is 

really a good topic which deserves a further study in future work. 

 

3.4  Building the Model 

Model Graph: 

 

Fig. 3 model graph of VBFSP method 

 

The algorithm of VBFSP method is shown as follows: 

Algorithm 1: 

Name: Voxel-Based Fast Surface Propagation 

Input: data_points 

Output: true data & outliers 

1. VoxelSet = GetVoxelSet(data_points); 

Connectivity Eigen Value
Core 

Propagation



2. InitialVoxel = GetInitialVoxel(VoxelSet); 

3. Add InitialVoxel in MainSurface; 

4. Loop: 

5.   foreach current_voxel in MainSurface: 

6.     if current_voxel is marked as untouched or unprocessed: 

7.       Mark current_voxel as true_data; 

8.     Foreach neighboring_voxel in GetNeighboringVoxels(current_voxel): 

9.       if DrivingFroceJudgement(neighboring_voxel, current_voxel) == true: 

10.         if neighboring_voxel is marked as untouched: 

11.           Add neighboring_voxel in FrontWave; 

12.           Mark neighboring_voxel as unprocessed; 

13.         else if neighboring_voxel is marked as unprocessed or true_data: 

14.           donothing; 

15.         else: 

16.           Mark neighboring_voxel as true_data; // It varies on specific cases 

17.       else: 

18.         if neighrboring_voxel is marked as untouched: 

19.           Mark neighboring_voxel as outlier; 

20.   if number of voxel in FrontWave is zero: 

21.     Jump out of loop; 

22.   Copy FrontWave to MainSurface; 

23. All data points in voxel marked as true_data are true data; 

24. All data points in voxel marked as outliers or untouched are outliers; 

 

 

Algorithm 2: 

Name: GetInitialVoxel 

Input: Voxel Set 

Output: initial voxel 

1. foreach voxel in Voxel Set: 

2.   if GetConnectivityFlag(voxel) is true: 

3.     error = CalcSmallestEgienValue(voxel); 

4.     hlevel = Bin(error); 

5.   else: 

6.     hlevel = MaxBinNum – 1; 

7.   Select a single voxel with smallest hlevel as initial voxel; 

 

 

Algorithm 3: 

Name: DrivingFroceJudgement 

Input: neighboring_voxel & current_voxel 

Output: true or false 

1. Calculate eigen vectors for the two voxels; 

2. Calculate the two plains for the two voxel; 



3. Calculate the distance between the centroid of data points in neighboring_voxel and plain 

in current_voxel; 

4. Calculate the included angle between the two plains; 

5. DrivingForce = ratio*Normalized(distance) + (1-ratio)*Normalized(angle); 

6. if DrivingForce < Threshold: 

7.   return true; 

8. else: 

9.   return false; 

 

3.5  Unique Features 

Some unique features of our VBFSP method compared with Shen’s surface propagation method 

include: 

(a) The VBFSP method is based on voxels instead of kd-tree, which makes it less expensive 

and more efficient than Shen’s method. 

(b) The VBFSP method combines not only the distance factor but also the angle factor, which 

makes it competent to different types of outlier clusters. 

(c) The VBFSP method starts from one initial voxel and runs one round of propagation while 

Shen’s surface propagation method starts from a number of initial points and runs several 

rounds of propagation. The experiment results show that as long as the driving force for 

surface propagation is effective and the initial voxel is good, one round of propagation is 

enough. 

 

In summary, the VBFSP method simplifies the complexity of surface propagation while keeping 

a high performance of removing outliers which are difficult to deal with. 

 

4. Numerical Experiment 

4.1  Test Cases 

We compared eigen values method, connectivity method, Shen’s surface propagation method 

and our VBFSP method on two data models. Both data model 1 (Fig. 4 (a)) and data model 2 

(Fig. 4 (b)) have sharp edges and non-isolated surface outlier clusters, which makes them 

extremely difficult to handle. In fact, data model 2 is more difficult than data model 1 to deal 

with because data model 2 has the non-isolated surface outlier clusters in the sharp edge area 

while data model 1 does not combine the two difficulties. Results and discussions about the 

experiment will be shown in section 5. 

 



      

(a) Data model 1                              (b) Data model 2 

 

Fig 4. Data models which have non-isolated and sharp featured surface outlier clusters 

 

4.2  Parameter Setting 

The setting of parameters varies on different models. We adjusted the setting according to the 

performance and display the setting we exploited in our experiment as follows. Notice that 

among all the parameters, m influences both the efficiencies and performances of algorithms, 

and the rest of parameters only influence performances. 

 

Table 1 

Parameter setting of eigen value method 

Method\parameters m (#voxel in each 

axis) 

HISTOGNUM 

(#histograms) 

Threshold of Histogram 

Eigen value method 100 (50 for data 

model 2) 

30 15 

 

Table 2 

Parameter setting of connectivity method 

Method\parameter

s 

m (#voxel in each 

axis) 

HISTOGNUM 

(#histograms) 

Threshold of 

Histogram 

Count 

threshold of 

connectivity 

Connectivity 

method 

100 (50 for data 

model 2) 

30 15 2 

 

 

Table 3 

Parameter setting of VBFSP method 

Method\parameters m (#voxel 

in each 

axis) 

HISTOGNUM 

(#histograms) 

Threshold 

of 

Histogram 

Count threshold of 

connectivity 

VBFSP method 100 (50 for 

data model 

2) 

30 15 2 



 

Method\parameters Dist_angl_ratio Scale Angle_t Dist_angl_Threshold 

VBFSP method 

(cont’d) 

0.6 (0.68 for data 

model 2) 

0 0 0.6 (0.355 for data model 

2) 

 

4.3  Computer Used 

The numerical experiment conducted in this paper was implemented in Visual Studio and tested 

on a Dell PC with 2.2 GHz Intel CPUs and 8 GB internal storage. To show the efficiencies of 

all the tested algorithms intuitively, no parallel computing techniques were exploited. 

 

4.4  Evaluation Criteria 

We use execution time as the evaluation criterion of time efficiency. To evaluate the 

performance of algorithms, we compare the raw data models and the processed data models 

after outlier removal. 

 

5. Results & Discussions 

                     

(a) Eigen value method              (b) Connectivity method

                    

(c) Shen’s method                                   (d) VBFSP method 

 

 Fig 5. Data model 1 (Fig. 4 (a)) processed by eigen value method, connectivity method, Shen’s 

method and our VBFSP method. 

 

 



                   

(a) Eigen value method                         (b) Connectivity method   

 

                  

(c) Shen’s method                               (d) VBFSP method 

 

Fig 6. Data model 2 (Fig. 4 (b)) processed by eigen value method, connectivity method, Shen’s 

method and our VBFSP method. 

 

 

Table 4 

Execution time and number of removed outliers in data model 1 for three methods. 

Method # of reserved points # of removed outliers Execution time 

(milisec) 

Eigen Value 187652 6450 7982 

Connectivity 183626 10476 8320 

Shen’s method N/A N/A N/A 

VBFSP method 187809 6293 9359 

 

Execution time and number of removed outliers in data model 2 for three methods. 

Method # of reserved points # of removed outliers Execution time 

(milisec) 

Eigen Value 89911 617 4681 

Connectivity 89642 886 3422 

Shen’s method N/A N/A N/A 

VBFSP method 86176 4352 3911 

 

Notice: Time Efficiency of Shen’s method for these two data models are not available yet. But the 

execution time of Shen’s method should be much larger than that of VBFSP method. 

 

Fig. 5 is a special case in which there are some clustered noise data inside a space bounded by a 

concave surface. The outlier clusters are so close to the main surface that many existing methods 



(e.g., eigen value method and connectivity method) fail to remove outliers, as shown in Fig. 5 (a) 

and (b). Shen’s method and our VBFSP method perform well in this case since they have a 

stronger ability of handling non-isolated outlier clusters as we mentioned in section 2 and 3. 

 

Fig. 6 is another typical case where non-isolated outlier clusters exist around a sharp corner. This 

case is more difficult than the above one since it combines non-isolated outlier clusters and sharp 

featured surface. Similarly to what happens in the above case, Shen’s method and our VBFSP 

method perform much better than eigen value method and connectivity method. 

 

      Notice that the performance of our VBFSP method is very close to that of Shen’s method, but 

our VBFSP method is much more efficient than Shen’s method. Since our propagation is voxel-

based, its efficiency is close to eigen value method and connectivity method, as shown in Table 

4. However, Shen’s method is based on kd-tree which is much more time-consuming. 

 

6. Conclusion & Future Work 

In summary, our algorithm is compared favorably to existing methods since it can remove outliers 

even in the most difficult cases and it is not so time consuming compared with Shen’s method 

which can also remove difficult outliers. The unique contribution of this paper is to propose a 

voxel-based surface propagation approach and a liner combination of distance and angle as the 

driving force of propagation which can deal with complex types of outlier clusters. 

 

In the future work, we plan to focus on: 

(a) Looking for more effective ways to select initial voxel of surface propagation. Notice that 

initial voxel is crucial for propagation and we are still not able to find the most suitable initial 

voxel automatically, we should do more work on that in the future work. 

(b) Looking for other effective driving forces of surface propagation. Notice that driving force is 

the power of propagation and determines the effects of propagation, finding more effective 

driving forces can help us remove more complex types of outlier clusters. 

 

7. References 

[1] Fleishman S, Drori I, Cohen-Or D. Bilateral mesh denoising. In: Proceedings of the 30th annual 

conference on computer graphics and interactive techniques. 2003. p. 950_3. 

[2] Xie H, McDonnell KT, Qin H. Surface reconstruction of noisy and defective data sets. IEEE 

Visualization 2004 2004;259_66. 

[3] Schall O, Belyaev A, Seidel H. Robust filtering of noisy scattered point data. In: Eurographics 

symposium on point-based graphics. 2005. Pauly, M. and Zwicker, M. 

[4] Jie Shen, David Yoon, et al. Spectral moving removal of non-isolated surface outlier clusters. 

Computer-Aided Design. 2008.09. 

[5] William H. Press, Saul Teukolsky, et al. Numerical Recipes in C. Cambridge University Press. 

1992. 

 



8. Appendix 

As for VBFSP method, since we use the results of eigen value method and connectivity method as 

the criterion of selecting an initial voxel of surface propagation, so the parts of the original code 

related to the above two are contributing to the final result. However, these parts are optional for 

our method, we can replace them with anything which can help select a good initial voxel. It means 

that we can regard them as some tools in our toolkit for selecting an initial voxel. Of course, the 

part of the original code related to the propagation procedure is the core part. 


